高三物理教案3篇

高三物理教案相对论指出,物体的能量(E)和质量(m)之间存在着密切的关系,即E=mc2式中,c为真空中的光速。爱因斯坦质能方程表明:物体所具有的能量跟它的。下面是小编为大家整理的高三物理教案3篇,供大家参考。

高三物理教案3篇

高三物理教案篇1

相对论指出,物体的能量(E)和质量(m)之间存在着密切的关系,即E=mc2式中,c为真空中的光速。爱因斯坦质能方程表明:物体所具有的能量跟它的。质量成正比。由于c2这个数值十分巨大,因而物体的能量是十分可观的。

高三物理教案篇2

光量子(光子):E=h

实验结论 光子说的解释

1、每种金属都有一个极限频率入射光的频率必须大于这个频率才能产生光电效应 电子从金属表面逸出,首先须克服金属原子核的引力做功(逸出功W),要使入射光子的能量不小于W,对应频率 即是极限频率。

2、光电子的最大初动能与入射光的。强度无关,只随入射光的频率增大而增大 电子吸收光子能量后,只有直接从金属表面飞出的光电子,才具有最大初动能即:

3、入射光照射到金属板上时光电子的发射机率是瞬时的,一般不会超过10-9S 光照射金属时,电子吸收一个光子(形成光电子)的能量后,动能立即增大,不需要积累能量的过程。

4、当入射光的频率大于极限频率时,光电流强度与入射光强度成正比 当入射光的频率大于极限频率时,入射光越强,单位时间内入射到金属表面的光子数越多,产生的光电子数越多,射出的光电子作定向移动时形成的光电流越大。

(1)产生光电效应的条件:①极;②hW

(2)发生光电效应后,入射光的强度与产生的光电流成正比。

(3)光电效应方程 ,W=h

(4)光电管的应用

能级

一、核式结构模型与经典物理的矛盾

(1)根据经典物理的观点推断:①在轨道上运动的电子带有电荷,运动中要辐射电磁波。②电子损失能量,它的轨道半径会变小,最终落到原子核上。

③由于电子轨道的变化是连续的,辐射的电磁波的频率也会连续变化。

事实上:①原子是稳定的;②辐射的电磁波频率也只是某些确定值。

二、玻尔理论

①轨道量子化:电子绕核运动的轨道半径只能是某些分立的数值。对应的氢原子的轨道半径为:rn=n2r1(n=1,2,3,),r1=0.5310-10m。

②能量状态量子化:原子只能处于一系列不连续的能量状态中,这些状态的能量值叫能级,能量最低的状态叫基态,其它状态叫激发态。原子处于称为定态的能量状态时,虽然电子做加速运动,但并不向外辐射能量。

氢原子的各能量值为:

③跃迁假说:原子从一种定态跃迁到另一种定态要辐射(或吸收)一定频率的光子,即:h=Em-En

三、光子的发射和吸收

(1)原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。

(2)原子在始末两个能级Em和Enn)间跃迁时发射光子的频率为,其大小可由下式决定:h=Em-En。

(3)如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。

(4)原子处于第n能级时,可能观测到的不同波长种类N为:

考点分析:

考点:波尔理论:定态假设;轨道假设;跃迁假设。

考点:h=Em-En

考点:原子处于第n能级时,可能观测到的不同波长种类N为:

考点:原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量En=EKn+EPn.轨道越低,电子的动能越大,但势能更小,原子的能量变小。

电子的动能: ,r越小,EK越大。

原子物理

一、原子的核式结构

二、天然放射现象、衰变

衰变次数的计算方法:根据质量数的变化计算次数,其次数n=质量数的变化量/4;根据电荷数的变化,计算衰变次数。中子数的变化量=2衰变次数+衰变次数。

三、半衰期的计算

半衰期计算公式: ;m为剩余质量;mO为原有质量;t为衰变时间;为半衰期。

四、核反应方程

五、核能的计算

核反应释放的核能:E=mc2或E=m931.5Mev

高三物理教案篇3

一、电流、电阻和电阻定律

1.电流:电荷的定向移动形成电流。

(1)形成电流的条件:内因是有自由移动的电荷,外因是导体两端有电势差。

(2)电流强度:通过导体横截面的电量Q与通过这些电量所用的时间t的比值。

①I=Q/t;假设导体单位体积内有n个电子,电子定向移动的速率为V,则I=neSv;假若导体单位长度有N个电子,则I=Nev.

②表示电流的强弱,是标量。但有方向,规定正电荷定向移动的方向为电流的方向。

③单位是:安、毫安、微安1A=103Ma=106A

2.电阻、电阻定律

(1)电阻:加在导体两端的电压与通过导体的电流强度的比值。R=U/I,导体的电阻是由导体本身的性质决定的,与U.I无关。

(2)电阻定律:导体的电阻R与它的长度L成正比,与它的横截面积S成反比。 R=L/S

(3)电阻率:电阻率是反映材料导电性能的物理量,由材料决定,但受温度的影响。

①电阻率在数值上等于这种材料制成的长为1m,横截面积为1m2的柱形导体的电阻。

②单位是:m.

3.半导体与超导体

(1)半导体的导电特性介于导体与绝缘体之间,电阻率约为10-5m ~106m

(2)半导体的应用:

①热敏电阻:能够将温度的变化转成电信号,测量这种电信号,就可以知道温度的变化。

②光敏电阻:光敏电阻在需要对光照有灵敏反应的自动控制设备中起到自动开关的作用。

③晶体二极管、晶体三极管、电容等电子元件可连成集成电路。

④半导体可制成半导体激光器、半导体太阳能电池等。

(3)超导体

①超导现象:某些物质在温度降到绝对零度附近时,电阻率突然降到几乎为零的现象。

②转变温度(TC):材料由正常状态转变为超导状态的温度

③应用:超导电磁铁、超导电机等

二、部分电路欧姆定律

1、导体中的电流I跟导体两端的电压成正比,跟它的电阻R成反比。 I=U/R

2、适用于金属导电体、电解液导体,不适用于空气导体和某些半导体器件。R2﹥R1 R2

3、导体的伏安特性曲线:研究部分电路欧姆定律时,常画成I~U或U~I图象,对于线性元件伏安特性曲线是直线,对于非线性元件,伏安特性曲线是非线性的。

注意:①我们处理问题时,一般认为电阻为定值,不可由R=U/I认为电阻R随电压大而大,随电流大而小。

②I、U、R必须是对应关系。即I是过电阻的电流,U是电阻两端的"电压。

三、电功、电功率

1.电功:电荷在电场中移动时,电场力做的功W=UIt,

电流做功的过程是电能转化为其它形式的能的过程。

2.电功率:电流做功的快慢,即电流通过一段电路电能转化成其它形式能对电流做功的总功率,P=UI

3.焦耳定律;电流通过一段只有电阻元件的电路时,在 t时间内的热量Q=I2Rt.

纯电阻电路中W=UIt=U2t/R=I2Rt,P=UI=U2/R=I2R

非纯电阻电路W=UIt,P=UI

4.电功率与热功率之间的关系

纯电阻电路中,电功率等于热功率,非纯电阻电路中,电功率只有一部分转化成热功率。

纯电阻电路:电路中只有电阻元件,如电熨斗、电炉子等。

非纯电阻电路:电机、电风扇、电解槽等,其特点是电能只有一部分转化成内能。

推荐访问:物理教案 高三 高三物理教案人教版 高三物理教案怎么写 高三物理教案动能定理及其应用 高三物理教案3-1第三章 高三物理教案电磁感应 高三物理教案模板范文 高三物理教案第一章 高三物理教案检查总结 高三物理教案欧姆定律 高三物理教案优秀案例